Self-organized criticality in a model for developing neural networks
نویسندگان
چکیده
منابع مشابه
Self-Organized Criticality in Developing Neuronal Networks
Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monito...
متن کاملAnalytical investigation of self-organized criticality in neural networks.
Dynamical criticality has been shown to enhance information processing in dynamical systems, and there is evidence for self-organized criticality in neural networks. A plausible mechanism for such self-organization is activity-dependent synaptic plasticity. Here, we model neurons as discrete-state nodes on an adaptive network following stochastic dynamics. At a threshold connectivity, this syst...
متن کاملDynamical synapses causing self-organized criticality in neural networks
We show that a network of spiking neurons exhibits robust self-organized criticality if the synaptic efficacies follow realistic dynamics. Deriving analytical expressions for the average coupling strengths and inter-spike intervals, we demonstrate that networks with dynamical synapses exhibit critical avalanche dynamics for a wide range of interaction parameters. We prove that in the thermodyna...
متن کاملDeveloping neuronal networks: Self-organized criticality predicts the future
Self-organized criticality emerged in neural activity is one of the key concepts to describe the formation and the function of developing neuronal networks. The relationship between critical dynamics and neural development is both theoretically and experimentally appealing. However, whereas it is well-known that cortical networks exhibit a rich repertoire of activity patterns at different stage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2011
ISSN: 1471-2202
DOI: 10.1186/1471-2202-12-s1-p221